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ABSTRACT
Due to the increase in cyber threats and the dynamic nature of
cyber attacks, it is important to use adaptive strategies to decide
when and where to deploy the defense resources and engage the
attackers through deceptive cyber artifacts to reduce attack effec-
tiveness. However, most existing work that uses game-theoretic
framework to analyze cyber deception does not consider defender
and attacker’s ability to adapt to real-time observations. In this pa-
per, we propose an Adaptive Cyber Deception Game, a two-player
Markov game model that accounts for sequential moves between
defender and attacker in a cyber deception scenario on an attack
graph. We also study the use of a reinforcement learning algorithm
– Proximal Policy Optimization (PPO) – with self-play in this game.
Preliminary experimental results show that the defender policies
found by PPO are significantly better than a heuristic policy.
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1 INTRODUCTION
Cyber space is continuously threatened [11, 18] by various forms of
attacks, which are difficult to detect and mitigate, given the increas-
ing number of devices in the network and the ever-growing amount
of valuable data assets. Research efforts from various perspectives
have been devoted to tackling cyber threats [16, 24, 47]. In recent
years, deception has received significant attention as a promising
measure the defender can take to slow down the attackers and
waste their resources [2, 8, 9, 14, 17]. Through deception, defenders
could confuse attackers during the reconnaissance phase or induce
them to pursue a dead end. More concretely, cyber deception could
be achieved by information dissimulation or information simula-
tion. Dissimulation strategy consists of partially or fully concealing
the true state of reality. For example, masking [1, 7] attempts to
hide or erase crucial information. On the other hand, the simula-
tion strategies exhibit false information. One example is decoying
[30, 49], where network defenders deploy honeypots or other kinds
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of decoys to lure attackers. In the real world, decoying techniques
like honeypots may be created via port hardening or by putting
fake content in computer systems [4].

There have been some existing works that model the cyber de-
ception problem as a two-player game between the defender and
the attacker [12, 32, 37, 41, 43]. For example, [25] models vulnerable
systems as an attack graph, with nodes and edges representing the
abstract states and their transition relations. However, most of these
works assume the players’ decision-making to be one-shot, i.e., the
attacker chooses one target to attack or choose a path in the attack
graph, and the defender chooses a deceptive and protective strategy
ahead of time, which is not in alignment with the reality [21]. At-
tackers usually have limited knowledge about the network topology
at the early stage regardless of their level of capability unless they
are insiders. Therefore, they need to keep collecting information as
they proceed in the attacking process. It is also a waste of resources
from the defender’s perspective to deploy defenses all at once since
the attacker will only go through one route in the graph. With
the assistance of intrusion detection and network forensics tools
[36, 45], it is possible for the defender to have partial observations
of attacker’s status and take actions accordingly. Thus, the defender
needs to use a strategy that is adaptive to the attacker’s actions.

To address this gap, we propose a new game model – Adaptive
Cyber Deception Game. This is a two-player Markov game, and it
is the first game model for cyber deception that accounts for the
sequential moves in the defender-attacker interaction. The game
is based on an attack graph [39] where each node can represent
an abstract state as in [25] or a computer system in a network.
Each node is associated with a value. In each time step of the game,
the defender can take deceptive actions and allocate protective
defense resources. The deceptive actions include adding a fake
edge, hiding an existing edge, or changing the appeared value of a
node. The attacker can move from one node to a neighboring node
in each step. We also study the use of reinforcement learning (RL)
algorithms in solving the game. Specifically, we use Proximal Policy
Optimization (PPO) [38] with self-play to learn the policies for the
players. Since the players have partial observability of the state
(e.g., the location of the attacker), we use Long-Short Term Memory
(LSTM) architecture in the policy network to leverage historical
observations. We evaluate the performance of PPO-derived policies
and show that they outperform heuristic policies significantly.



2 RELATEDWORK
Attack graph. We build our game model on an attack graph. At-

tack graph [39] is a commonly-used, versatile modeling tool for
security challenges in different domains. As networks of hosts con-
tinue to grow in size and complexity, attack graphs become handy
to model the attack surface [28, 44], and an attacker’s arsenal of
atomic attacks, expose the effects of individual host vulnerabili-
ties and uncover multi-stage vulnerabilities introduced by their
interactions. In practice, an attack graph is typically generated au-
tomatically by model checking [5]. Each node in the attack graph
represents an attack status, while each edge represents an atomic
attack that the intruder can use to change the network status or
collect knowledge about it.

Cyber deception. A recent review of the literature regarding de-
ception in cybersecurity proposes a game-theoretic taxonomy that
categorizes cyber deception into six types: perturbation, moving tar-
get defense, obfuscation, mixing, honey-x, and attacker engagement
[3, 15, 17, 19, 31, 34]. Cyber deception has been proved to be effective
in automated and dynamic systems [26, 35] to orchestrate decoy
deployment. It is also modeled with game-theoretic approaches
[40] which aim to formally reason about strategic behavior and
find optimal deception strategies. The most relevant work to ours
is [13], which proposed a game model to analyze adaptive cyber
deception. However, their model considers an extensive-form game
with high-level defense actions such as disabling login, setting up a
decoy, and blocking the attacker. In contrast, our model is a Markov
game on an arbitrary attack graph, with a detailed set of decep-
tive and protective actions. Besides, their work does not consider
computational aspects, and the framework can only be applied to
very small scenarios where the entire game tree can be enumerated
and analyzed by hand. We not only provide a game model but also
present a RL-based approach for solving the game.

Reinforcement learning (RL) for cyber security. RL can be used
to train an agent to take sequential actions optimally with possi-
bly limited prior knowledge about the environment and has been
proved to perform well in highly dynamic cyber security envi-
ronments [22, 33]. The incorporation of deep learning enabled an
even larger number of applications to various aspects of cyber se-
curity [27]. Some attacking scenarios involving multiple agents
(attacker and defenders) are modeled using game-theoretic frame-
works and solved using RL [10] or multi-agent RL [29, 46]. Our
work also uses a RL-based approach to solve the proposed game.

3 ADAPTIVE CYBER DECEPTION GAME
In cyber security in the real world, one network is protected by
multiple security analysts and attacked by multiple attackers with
diverse motivations and different levels of attack capabilities. The
capability of defenders to detect and respond to network status
updates also varies. Depending on the network topology, there can
be one or more hosts valuable to the adversaries. In the proposed
Adaptive Cyber Deception Game, only one attacker is playing against
one defender protecting an attack graph. The defender updates its
defense deployment at a fixed frequency. The attacker propagates
through the graph at the same speed. This setting is chosen for
the sake of modeling simplicity. It is possible to extend the game

from two-player to two-team and relax the frequency of defense
deployment.

In each round, every agent takes action in turn. The defender
chooses his strategy first; the uncaught attacker selects his strategy
after surveillance. The attacker is assumed to take the presented
information as truth. In this section, we describe the attack graph,
the players’ strategy space, and the players’ payoff.

Attack Graph: Attack graphs 𝐺 = (𝑁, 𝐸,𝑉 , 𝑃) represent attack-
ers’ possible attack paths. The nodes 𝑁 represent attack status and
can be interpreted at various granularity, from the tokens collected
to the foothold in a network. The yellow nodes represent the en-
tering node in the attack graph (with in degree equals zero) and
the possible initial status of the attacker in the beginning. Each
node is assigned a value 𝑣𝑒 in resemblance to the value of digital
assets. Each edge is assigned with a probability 𝑝𝑒 to indicate the
success probability of transiting from the source node to the des-
tination node. The edges 𝐸 = 𝐸𝑟𝑒𝑎𝑙 ∪ 𝐸𝑓 𝑎𝑘𝑒 = 𝐸𝑣𝑖𝑠𝑖𝑏𝑙𝑒 ∪ 𝐸𝑖𝑛𝑣𝑖𝑠𝑖𝑏𝑙𝑒
represent actions that attackers can take to transit between nodes.
𝐸𝑟𝑒𝑎𝑙 represents the real edges in the attack graph. 𝐸𝑓 𝑎𝑘𝑒 repre-
sents the available fake edges that the defender can choose to add.
|𝐸𝑓 𝑎𝑘𝑒 | = 𝑁 (𝑁 −1) since there’s one fake edge quota between each
pair of nodes for a specific transit direction. 𝐸𝑓 𝑎𝑘𝑒 ∩ 𝐸𝑣𝑖𝑠𝑖𝑏𝑙𝑒 = ∅
when no fake edges are added. The model assumes that there’s no
more than one action that can bring the attacker from one state
to the same successor state, and only unidirectional movement is
allowed. Thus, there’s no more than one real edge between each
pair of nodes.

Figure 1: Attack Graph

Attacker Action Space 𝐴𝑎 : The attacker can choose one outgoing
edge of the current node as the next move to advance its status. He
can also choose not to take action and stay at the same location for
another time step.

Defender Action Space 𝐴𝑑 = {(𝑉 ′
, 𝑒ℎ𝑖𝑑𝑒 , 𝑒𝑎𝑑𝑑 , 𝑒𝑚𝑜𝑛𝑖𝑡𝑜𝑟 ) |𝑒ℎ𝑖𝑑𝑒 ∈

𝐸𝑟𝑒𝑎𝑙 , 𝑒𝑚𝑜𝑛𝑖𝑡𝑜𝑟 ∈ 𝐸𝑟𝑒𝑎𝑙 , 𝑒𝑎𝑑𝑑 ∈ 𝐸𝑓 𝑎𝑘𝑒 }: The defender can take two
types of action: deceptive and protective actions. By deception, the
defender can (i) hide a real edge, (ii) add a fake edge, (iii) modify
the perceived values of a set of nodes. By protection, the defender
can monitor an edge 𝑒 to interrupt the attacker’s movement. The
hidden real edge will become invisible to the attacker. The added
fake edge is monitored by nature. An attacker attempting to go
through a fake edge will get caught by the defender.

Defenders are given a budget for defense. The particular ac-
tion space 𝐴𝑡

𝑑
at timestamp 𝑡 is updated based on the attack graph

topology. If the location of the attacker is known to the defender



(determined by threshold ℎ), he will be able to deploy precisely
targeted defenses through only defending the reachable nodes and
edges starting from the attacker’s location. No action will be taken
when the attacker’s location is known and there’s no precise de-
fense available. If the attacker’s location is unknown, the defender
will then have no choice but to make decisions out of a larger space.
The defender is allowed to manipulate the perceived value of any
number of unoccupied nodes, monitor a real edge, hide a real edge,
and add a fake edge simultaneously at one timestamp. The defender
can choose not to change the values of modifiable nodes by keeping
them the same as previous round. The defender is also allowed to
opt out for edge hiding, adding, or monitoring. All above actions
are temporary and can last for one single timestamp. That is, the
fake edge will disappear if not chosen to be added in the next step,
and the hidden real edge will reveal itself if not chosen to be hidden
in the next step. The defender needs to choose different real edges
to hide or monitor if he decides to use both techniques.

Attacker’s Observation 𝑂𝑎 = (𝑙𝑜𝑐, 𝐸′
,𝑉

′): The observation space
of the attacker consists of three parts: the location of himself, the
visible edges, the perceived node values. The observation is updated
at each timestamp determined by the state transition of the attacker
himself and the action of the defender. 𝐸

′
= 𝐸𝑣𝑖𝑠𝑖𝑏𝑙𝑒 ∩ 𝑒𝑖 𝑗,𝑖=𝑙𝑜𝑐 ,

meaning that the attacker observe only the forward edges within
the horizon of one hop.𝑉

′
𝑡 = 𝑉

′
𝑡−1 ∪ {𝑣𝑖 |𝑖 ∈ {𝑛 |𝑒𝑛𝑗 ∈ 𝐸

′}}, meaning
that the attacker keeps accumulating knowledge while pivoting
through the network.

Defender’s Observation 𝑂𝑑 = (𝑙𝑜𝑐 |ℎ,𝑉 ,𝑉 ′
, 𝐸𝑣𝑖𝑠𝑖𝑏𝑙𝑒 , budget): The

observation space of the defender consists of five parts: the at-
tacker’s location (at probability ℎ), the real node values, the ma-
nipulated node values, visible edges, and the available budget. The
defender might be able to know the location of the attacker at prob-
ability ℎ, to reflect the difficulty of detecting and keeping track of
the attackers.

Reward Scheme: The attacker gets immediate reward for each
successful establishment of foothold on a node. If finally get caught,
he will get a 10 points penalty but get to keep the values collected.
The assumption is that the attacker is able to get the benefit out of
the reached nodes and cause irreversible loss to the defender.

𝑅𝑎 (𝑆𝑡 ) =


𝑣𝑛𝑡 , if t ≤ episode length & 𝑛𝑡 ≠ 𝑛𝑡−1 & safe
0, if t ≤ episode length & 𝑛𝑡 = 𝑛𝑡−1 & safe
−10, if caught

(1)

The defender in the contrast gets his reward at the end of each
episode to capture his oblivious about attacker’s status.

𝑅𝑑 (𝑆𝑡 ) =


0, if t < episode length∑
𝑛∈𝑁𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑

𝑣𝑛, if t = episode length& didn’t catch
10 −∑

𝑛∈𝑁𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑒𝑑
𝑣𝑛, if t = episode length & caught

(2)
This reward mechanism is designed to incentivize the attacker
to pivot through the most valuable route in the network and try
to avoid the defender in the meanwhile. While the defender is
motivated to catch the attacker as fast as possible before losing too
much information to the attacker.

Powerful Attacker: Attackers in the real world can possess differ-
ent levels of skills and knowledge. We also consider the possibility
of being confronted with powerful attackers who can see through
the deceptions in the attack graph and evade the traps. Specifi-
cally, they might be able to learn the ground truth values of nodes,
identify hidden real edges and differentiate fake edges.

4 LEARNING TO PLAY ADAPTIVE CYBER
DECEPTION GAME

To solve the adaptive cyber deception game, we explore the use of
an RL algorithm PPO with self-play. PPO is a policy gradient-based
algorithm targeting at optimizing the policy directly. It has shown
great success in various single-agent and multi-agent problems
such as Atari games [48], real-time strategy games [6] and robotic
control [42]. The policy network of PPO takes a vector describ-
ing the state as input and outputs a probability distribution over
available actions.

Given that the set of valid actions varies per step and the number
of valid actions is large, an invalid action masking scheme is utilized
to prevent the agents from selecting actions that are invalid or
cannot be performed in the current state. The policy network of
PPO is customized to take a binary actionmask vector in companion
with the observation vector. The customized network outputs the
sum of action logits and the logarithm of the action mask in which
the probabilities of invalid actions are zero.

The set of valid actions of the attacker is conditioned on its
location on the attack graph and the visibility of real and fake
edges. An attacker is only allowed to move along visible outgoing
edges from its foothold. The available actions of the defender are
dependent on the occupied status of nodes, the budget remained,
and the knowledge about attacker’s location. The defender can not
manipulate the value of nodes occupied by the attacker. Actions
with costs higher than his available budget are also disabled. When
the attacker’s location is known, only defenses on nodes at the next
layer of the attacker’s foothold are considered valid.

The game state is partially observable for both defender and
attacker. Nodes 𝑛 ∈ 𝑁 in attack graph 𝐺 = (𝑁, 𝐸,𝑉 , 𝑃) are in-
dexed from 1 to 𝑁 . Real edges 𝑒𝑟𝑒𝑎𝑙 ∈ 𝐸𝑟𝑒𝑎𝑙 are indexed from 0
to |𝐸𝑟𝑒𝑎𝑙 | − 1, while fake edges 𝑒𝑓 𝑎𝑘𝑒 ∈ 𝐸𝑓 𝑎𝑘𝑒 are indexed from
|𝐸𝑟𝑒𝑎𝑙 | to |𝐸𝑟𝑒𝑎𝑙 | + 𝑁 (𝑁 − 1). Defender’s observation vector is the
concatenation of the one-hot encoding of attacker’s location, the
real node value integer vector, the manipulated node value integer
vector, a binary vector indicating the visibility of edges, and an
integer representing remained defense budget. The encoding of
attacker’s location is a zero vector when it is unknown. Attacker’s
observation is the concatenation of the one-hot encoding of his
location, the manipulated node value integer vector, and a binary
vector indicating the visibility of edges.

Since it is possible for the attacker to stay at his original location
because of a failure tomake a state transition or a deliberate decision
to stay still, the observation vector is further encoded by an LSTM
[20] network for the attacker to observe conflicting node values
and different visible edges in the history.

PPO is initially designed to be a single-agent RL algorithm. To
solve our game, we follow other works that use PPO for multi-agent
setting, e.g., [6] and run PPOwith self-play. Concretely, the defender



and attacker will each maintain a policy network. In each training
step, we collect experiences based on the players’ current policies,
and then run one-step update for the defender’s and attacker’s
network parameters using PPO separately.

5 EXPERIMENT
We compare the performance of PPO-based policies against heuris-
tic policies. We use the RLlib [23] implementation of the PPO policy
network and LSTM network. The heuristic attacker always chooses
to move to the observable node with the highest value. The heuris-
tic defender will first try to change the perceived value of nodes
to have the highest-valued node non-differentiable from others. If
the budget is not exhausted after masking, the defender will then
randomly hide a real edge, add a fake edge, or defend a real edge in
the following steps.

The number of nodes and real edges in the attack graph is fixed
as 4 and 5, respectively. The graph topology is randomly sampled
in each episode. It is guaranteed that there exists only one real
edge between each pair of nodes. The value of each node is an
integer randomly sampled from [0, 2]. The defender’s budget is
also randomly sampled from the range of [1,𝑈 + 1]. The upper
bound 𝑈 = min𝑣∗∈N

∑
𝑖∈𝑁 |𝑣𝑖 − 𝑣∗ | is the minimum cost it takes to

make the value of all nodes the same. The attacker is assigned to
one of the entry nodes randomly at the beginning.

We run 100000 episodes for training the PPO defender and the
PPO attacker. After training, we evaluate the policies by two per-
formance metrics: 1) exploitability and 2) defender’s utility against
a diverse set of opponents.

The exploitability of a policy pair (𝜋𝑎, 𝜋𝑑 ) from the attacker 𝑎
and the defender 𝑑 is calculated by 𝐸𝑥𝑝 (𝜋𝑎, 𝜋𝑑 ) = 𝐸𝑥𝑝𝑎 (𝜋𝑎, 𝜋𝑑 ) +
𝐸𝑥𝑝𝑑 (𝜋𝑎, 𝜋𝑑 ), where{

𝐸𝑥𝑝𝑎 (𝜋𝑎, 𝜋𝑑 ) = 𝑈𝑎 (𝜋𝑎, 𝜋𝑑 ) −𝑈𝑎 (𝜋𝑎, 𝐵𝑅𝑑 (𝜋𝑎))
𝐸𝑥𝑝𝑑 (𝜋𝑎, 𝜋𝑑 ) = 𝑈𝑑 (𝜋𝑎, 𝜋𝑑 ) −𝑈𝑑 (𝐵𝑅𝑎 (𝜋𝑑 ), 𝜋𝑑 ).

(3)

𝑈𝑎 and𝑈𝑑 are attacker and defender’s utilities. An agent’s utility of a
policy pair is evaluated by running the policy against another policy
for 1000 episodes and calculating the average accumulative reward
of this agent. 𝐵𝑅𝑑 (𝜋𝑎) is the defender’s best response against an
attacker’s policy 𝜋𝑎 . 𝐵𝑅𝑎 (𝜋𝑑 ) is the attacker’s best response against
an defender’s policy 𝜋𝑑 . Specifically, in our zero-sum game,

𝐸𝑥𝑝 (𝜋𝑎, 𝜋𝑑 ) = − (𝑈𝑎 (𝜋𝑎, 𝐵𝑅𝑑 (𝜋𝑎)) +𝑈𝑑 (𝐵𝑅𝑎 (𝜋𝑑 ), 𝜋𝑑 )). (4)

Finding the best response to a policy is difficult in our game model.
To calculate one agent’s best response against another agent’s pol-
icy, we train a PPO policy for this agent by running 1000000 episodes
with another agent’s fixing policy.

The exploitability of a pair of policies measures the distance from
the Nash equilibrium. Fig 2 shows the exploitability of different
combinations of policies. The exploitability of the PPO defender
evaluated against the PPO attacker is relatively small, which means
that this pair of policies is closer to a Nash equilibrium. Also, with
much smaller exploitability, the PPO attacker is much better than
the heuristic attacker.

We also compare the PPO defender with the heuristic defender
by showing their utilities against multiple attackers. The attackers
we use are 1) the heuristic attacker; 2) the PPO attacker trained

Figure 2: Exploitability of the heuristic defender and the
PPO defender evaluated against the heuristic attacker and
the PPO attacker

against the heuristic defender; 3) the PPO attacker trained against
a PPO defender in the PPO self-play.

To test the robustness of our PPO defender policy, we further
evaluate the PPO defender against multiple powerful attackers who
can see through the deceptions in the attack graph. The power-
ful attackers we use are 4) the powerful heuristic attacker who
always chooses to move through the real edge to the node with the
real highest value; 5) a powerful attacker trained with PPO policy
against the heuristic defender; 6) a powerful attacker trained with
PPO policy against a PPO defender in the PPO self-play.

We run 1000 episodes to calculate the defender’s utility for each
pair of defenders and attackers. Fig 3 shows the evaluated results.
With a higher utility against each attacker, the PPODefender always
outperforms the heuristic defender. Meanwhile, each defender’s
utility decreases from left to right, which verifies that the powerful
attacker is more aggressive and shows that the PPO attacker causes
more loss to the defender.

Figure 3: Defenders’ utilities against multiple attackers

6 DISCUSSION AND FUTUREWORK
The preliminary results of our experiments to some extent show
promise for using RL to learn deceptive defense policies on a cyber
attack graph game. However, the scale of the attack graph and node
values are limited. To determine whether the RL algorithm is indeed



more beneficial compare to heuristic models, we are planning to
run more experiments on attack graphs of various sizes and node
values comparing the performance of PPO policy against heuristic
policy.

We also plan to explore the effectiveness of multi-agent RL al-
gorithms rather than utilizing single-agent RL algorithm directly.
A further step is to extend the model to a multi-attacker multi-
defender setting to investigate the interaction between cooperative
attackers and cooperative defenders.
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